بررسی تاثیر قیمت‌گذاری معابر بر شیوه انتخاب وسیله کاربران با استفاده از روش رجحان بیان شده

نویسندگان
1 دانشگاه تربیت مدرس
2 پژوهشکده پارسه
چکیده
قیمت­گذاری تراکم به عنوان یکی از مهمترین رویکردهای مدیریت تقاضا در معابر شهری مطرح می­باشد. یکی از سوالات اصلی تصمیم­گیران در ارتباط با بکارگیری این سیاست، میزان تاثیر قیمت­گذاری بر نحوه انتخاب وسیله افراد و مقدار تغییر از وسیله نقلیه شخصی به سایر شیوه­های جابجایی می­باشد. در این پژوهش نیز سعی بر آن بوده است تا نسبت به اثرسنجی قیمت­گذاری تراکم بر انتخاب وسیله افراد پرداخته شود. با توجه به عدم امکان مشاهده مستقیم اثرات قیمت­گذاری از روش رجحان بیان­شده برای ایجاد بانک اطلاعاتی استفاده شد. سناریوهای مختلف قیمت­گذاری مبتنی بر روشهای طراحی تجربی تهیه و در قالب پرسشنامه­هایی که حاوی سوالاتی در ارتباط با مشخصات اقتصادی – اجتماعی و ویژگیهای سفر افراد بود، از کاربران مورد پرسش قرار گرفت. با توجه به سناریوهای قیمت­گذاری، 4 انتخاب شامل وسیله نقلیه شخصی، حمل و نقل همگانی همگانی، تاکسی و عدم انجام سفر به کاربران ارائه شد. بیش از 3500 پرسشنامه جمع­آوری و پس از اعتبارسنجی اولیه وارد بانک اطلاعاتی شد. برای مدلسازی، با توجه به ماهیت گسسته داده­ها، از مدل لوجیت چندگانه استفاده شد و برای هر یک از انتخابها نسبت به پرداخت مدل اقدام شد. نتایج نشان داد قیمت­گذاری می­تواند به عنوان یک ابزار مناسب برای مدیریت تقاضای وسایل نقلیه شخصی بکار رود. به طوری که با تعیین عوارضی معادل 3000 تومان برای ورود به محدوده تنها 35 درصد از وسایل نقلیه شخصی استفاده می­نمایند و مابقی نسبت به تغییر وسیله یا برنامه سفر خود اقدام می­نمایند. نتایج نشان داد که 30 درصد از افراد نسبت به انتخاب گزینه حمل و نقل همگانی و 24 درصد نسبت به انتخاب گزینه تاکسی مبادرت می­ورزند. در نهایت وضعیت انتخاب وسیله افراد در قیمتهای مختلف بررسی و مورد بحث قرار گرفت.

کلیدواژه‌ها


عنوان مقاله English

Effect of Congestion Pricing on Users' Mode Split Using Stated Preference Technique

نویسندگان English

B. mirbaha 1
m. saffar 1
s.a abrishame 1
S sharafaty 2
چکیده English

Congestion pricing is one of the main strategies for demand management in urban areas. One of the main questions for decision makers, for implementing this strategy, is the effect of congestion pricing on users' mode split. For defining this, the willingness to pay of users should be estimated. In another word, we should know that how much users still will to pay for using their personal cars and how they intend to perform their mobility according to various prices. Previous studies had pay less attention to paratransit mode according to pricing. In this research, the effect of congestion pricing on users' mode choice has been investigated. The restricted traffic zone of Tehran has been selected for case study. Due to impossibility of direct observation, the stated preference method was applied for data gathering. Various pricing scenarios, based on experimental design concept, were defined and several types of questionnaires were designed. In these questionnaires, 3 types of data were asked from interviewees including trip chain of the users, socio economic characteristics and pricing scenarios. According to pricing scenarios, 4 choices including using personal car, public transportation, taxi and cancelling the trip were presented to users which they should choose only one option due to every pricing scenario. The reliability of questionnaires have been investigated with cronbach's alpha which results showed the proper reliability of questionnaires. More than 3500 interviews were performed and after preliminary validation, were entered in the database. Based on this data, more than 70 variables were defined which their correlation was estimated and proper variables were chosen. For modeling, due to discrete nature of data, multinomial logit model was applied and calibrated for every choice. In this regard, the feasibility of applying nested logit model was also tested which results showed the invalidity of this model. More than 200 models have been calibrated and finally best validated models have been chosen for describing the mode choice of every alternative.
Results of modeling showed that having more expansive cars will increase the utility of using personal cars and reduce the public transport utilization. Also the residence location of the users is effective in their mode choice. Living in restricted zone, increase the willingness of users to use transit and paratransit mode. Users' education is also important in their choice. People with higher education level have more willingness to pay. The sensitivity analysis showed that pricing can be a proper tool for managing personal vehicles demand. When entrance toll is equal to 3000 tomans, only 35 percents use their personal vehicles. In this condition, 30 percents of users choose transit mode. Results also showed that choosing transit and paratransit mode is similar. When the toll is more than 17000 tomans, the rate of using taxi have higher growth comparing to transit utilization. Also, results showed that the demand for entering to restricted zone can be assumed inelastic. In highest toll, only 10 percents of users cancelled their trip. Finally, the sensitivity analysis for every mode has been accomplished and multiple future researches have been proposed.
Keywords: Mode Split models, Congestion pricing, stated preference method

[1]     Carey, M., and Srinvasan, A., (1993), “Externalities, average and marginal costs, and Tolls on congested networks with time varying flows”, Operational Research 41(1), 217-231.
[2]     Bowerman, A., (2007), “The costs and benefits of road pricing: Comparing Nationwide charging with project-based schemes”, IEA discussion paper No.17-18.
[3]     Polak,J.,et all, (1992), “an assessment of some recent studies of travelers choice of time of travel”, Transport studies unit, University of Oxford.
[4]     Chen, Yih., Jana, Rittwik,. (1990), “Using Generalized Second Price Auction for Congestion Pricing”, At-T labs Research Center.
[5]      Small, K.A., (1992), “Use the revenues from congestion pricing”, Transportation 19, 359–381.
[6]     Frick, K.T., Heminger, S., Dittmar, H., (1996), “Bay bridge congestion-pricing project: Lessons learned to date”, Transportation Research Record 1558, 29–38.
[7]     Bhat, Chandra, (2005), “Analysis of Travel Mode and Departure Time Choice for Urban Shopping Trips”, University of Texas at Austin.
[8]     J. Eliasson, L. Hultkrantz, L. Nerhagen, L.S. Rosqvist, (2009), “The Stockholm congestion-charging trial 2006: Overview of effects”, Transportation Research Part A: Policy and Practice, vol. 43, issue 3, pp. 240–250, March.
[9]     B. Bureau and M. Glachant, (2008), “Distributional effects of road pricing: Assessment of nine scenarios for Paris”, Transportation Research Part A: Policy and Practice, vol. 42, issue 7, pp. 994-1007.
[10] Xu,Shunan., Ben Akiva, (2009), " Development and test of dynamic congestion pricing model", Massachusetts Institute of Technology.
[11] Sugiyanto, G., Malkhamah, S., Munawar, A., Sutomo, H., (2009), " Modeling the effect of congestion pricing on mode choice in yogyakarta", Jenderal Soedirman University, Indonesia.
[12] Bandeira, J., Coelho, M., Pimentel, M., Khattak, A., (2012), Impact of intercity tolls in Portugal- An environmental perspective", Transport Research Arena, Procedi social and behavioral sciences.
[13] Hensher. A. D. Button. K.J, (2000), "Handbook of transport modeling". Emerald Group Publishing., Chiechester, West Susex, England.
[14]         شرکت مطالعات جامع حمل و نقل و ترافیک تهران، مطالعات جامع حمل و نقل و ترافیک شهر تهران، زمستان 1386.
[15] Cronbach, L. J. (1951), Coefficient alpha and the internal structure of tests. Psychometrika. 16, 297-334.
[16] McFadden, Daniel, (1974), "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
[17] Louviere, J, J., Hensher, A., Swait, J., (2003), "Stated Choice Methods (Analysis and Applications)", Cambridge University Press.
[18] Comune di Milano, (2008). Monitoraggio indicatori Ecopass. Agenzia Milanese Mobilit_a Ambiente ,Milano.
[19] Transport for London, (2004), Central London congestion charging: impact monitoring. Second Annual Report.