تصفیه تکمیلی شیرابه کمپوست با استفاده از فرایند فتوکاتالیستی UV/TiO2

نویسندگان
1 عضو هیات علمی دانشکده عمران و محیط زیست دانشگاه تربیت مدرس
2 دانش آموخته رشته مهندسی محیط زیست دانشگاه تربیت مدرس
چکیده
یکی از اقدامات لازم در خصوص مدیریت پسماند، جمع­آوری و تصفیه شیرابه است. تاکنون از روش­های مختلفی برای تصفیه شیرابه استفاده شده که یکی از این روش­ها که به تازگی مورد توجه قرار گرفته، فرایند فتوکاتالیستی است. در این پژوهش تصفیه تکمیلی شیرابه کمپوست با استفاده از نانو ذرات TiO2 تثبیت شده بر بستر بتنی و با تابش نور UV، در مقیاس آزمایشگاهی بررسی شد. شیرابه استفاده شده از خروجی تصفیه‌خانه یکی از مراکز تولید کمپوست کشور که در دو مرحله تصفیه بیولوژیکی می‌شود تامین شد. در این فرایند از لامپ­های UV-C با توان­های مختلف در محدوده 107-8 وات که در فاصله ثابت 10 سانتی‌متر از سطح شیرابه قرار داشت استفاده شد. ابتدا به منظور تعیین تاثیر هر یک از پارامترهای اصلی موثر بر فرایند، آزمایش­های شاهد در شرایط تاریکی مطلق، بستر بتنی بدون پوشش نانو ذرات و اشعه UV تنها انجام، و تاثیر هر یک از عوامل مذکور به صورت مجزا بر حذف بار آلی از شیرابه ارزیابی شد. در ادامه تاثیر هم‌زمان عوامل یاد شده مورد بررسی قرار گرفته و در شرایط بهینه بیشینه حذف COD و رنگ به ترتیب 62 و 33 درصد در 5pH=، زمان ماند 20 ساعت، پوشش دهی نانو ذرات به میزان 60 گرم بر متر مربع و با استفاده از لامپ UV با توان 77 وات حاصل شد. با در نظر گرفتن استانداردهای سازمان حفاظت محیط زیست کشور، فرایند فتوکاتالیستی UV/TiO2قادر به کاهش بار آلی شیرابه برای استفاده در کشاورزی است.

کلیدواژه‌ها


عنوان مقاله English

UV-TiO2 Photocatalytic Degradation of Compost Leachate

نویسندگان English

Nader Mokhtarani 1
Saeid Khodabakhshi 2
Bita Ayati 1
1 Assistant Professor, Civil & Environmental Engineering faculty, Tarbiat Modares University
چکیده English

UV-TiO2 Photocatalytic Degradation of Compost Leachate Abstract The growing rate in solid wastes production leads to considerable generation of leachate. Leachate is defined as the aqueous effluent generated as a consequence of precipitation percolation through wastes, biochemical processes in wastes body and the inherent water content of wastes themselves. Since the leachate contains significant amount of organic and inorganic compounds, it is not allowed to be directly discharge to the environment. Conventional treatment techniques to remove organic matters from leachate include physical, chemical and biological processes. Most of these techniques are non-destructive and do not solve the environmental problems because the wastes are simply transferred from water to another phase creating secondary wastes pollution. Biological method was regarded as the most efficient and cheapest process to eliminate organic materials from leachate. However, biological process cannot usually remove refractory substances. Therefore, the effluent values of the organic content do not meet the standards of the treated wastewater with respect to persistent contaminants. Due to limited biodegradability, the treatment of leachate, apart from biological methods necessitates the application of other methods, which complement and support the main process. Advanced oxidation process has been intensively studied in the past decade to improve the removal of these large refractory organic molecules or to transform them into more easily biodegradable substances. Among them photocatalytic process is one of the appropriate methods for final treatment of these kinds of waste. In this study, application of photocatalytic process via UV light and TiO2 Nano particles immobilized on concrete surface in post-treatment of composting leachate was investigated. This investigation was conducted in laboratory scale and batch mode. A biological pre-treated leachates sample which contains some macromolecular organic substances that were resistant to biological degradation were collected from the effluent of leachate treatment facility, of Gorgan composting plant (Golestan, Iran). UV-C lamps with different power in the range of 8-107 W at a constant distance of 10 cm from the surface of the leachate were used as the source of irradiation. Pervious concrete was constructed using LECA lightweight aggregates with the dimension of 30*10*10 cm. Immobilization of TiO2 on concrete surface was done by using concrete sealer. In order to investigate the effect of each parameter individually, some experiments were carried out. The results showed that the presence of nanoparticles and UV radiation alone did not significantly affect on the COD removal. According to the conducted experiments the maximum COD removal of 62% was achieved after 20 hr radiation with 7.5 mW.Cm-2 intensity in pH value of 5 and in presence of 60 g.m-2 of TiO2 coated on concrete. According to Iranian environmental standards and with regard to organic loading of leachate, removal efficiency of this process was in such a way that it could be directly discharged into the environment. Keyword: Leachate treatment, Photo Catalysis reaction, TiO2, light intensity, Color, COD

کلیدواژه‌ها English

COD
Leachate treatment
Photo Catalysis reaction
TiO2
color
Danesh S., Yazdanbakhsh M., Hosnidokht M.R., Abedini torghabeh J.; "Characterize the leachate of municipal solid wastes"; 4th National Congress of Solid Wastes Management, Tehran, 2010.
[2] Long YY., Shen DS., Wang HT., Lu WJ.; "Migration behavior of Cu and Zn in landfill with different operation modes"; Journal of Hazardous Materials; 179(1-3), 2010, 883–890.
[3] Tchobanoglous G., Theisen H., Vigil S.A., "Integrated solid waste management"; McGraw-Hill, 1993, Singapore
 [4] Mokhtarani N., Bayatfard A., Mokhtarani B.; "Full scale performance of compost's leachate treatment by biological anaerobic reactors"; Waste Management & Research, 30, 2012, 524–529
[5] Lopez, A., Pagano, M., Volpe, A., Di Pinto, A., "Fenton's pre-treatment of mature landfill leachate", Chemosphere 54 (7), 2004, 1005-1010.
[6] Silva, A. C., Dezotti, M., Sant'Anna Jr, G. L., "Treatment and detoxication of a sanitary landfill leachate", Chemosphere 55 (2), 2004, 207-214.
 [7] Tauchert E., Schneider S., Lopes de Morais J. and Peralta-Zamora P.; “Photochemically- assisted electrochemical degradation of landfill leachate”; Chemosphere; 64, 2006, 1458–1463.
[8] Chandrasekara Pillai K., Kwon T.O., Shik Moon l.; ”Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions"; Applied Catalysis B: Environmental; 91(1-2), 2009,  319–328.
[9] Shu HY., Fan HJ., Chang MC., Hsieh WP.; “Treatment of MSW landfill leachate by a thin gap annular UV/H2O2 photoreactor with multi-UV lamps”;  Journal of Hazardous Materials; 129(1-3), 2006,73–79.
[10] Wang, F., Smith, D. W., & El-Din, M. G.; "Application of advanced oxidation methods for landfill leachate treatment"; Journal of Environmental Engineering and Science, 2, 2003, 413–427
[11] Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V.; "Landfill leachate treatment methods: A review"; Environmental Chemistry Letters, 4, 2006, 51–61.
[12] Lasa, H.D., Serrano, B., Salaices, M., "Photocatalytic Reaction Engineering", Springer Science, 2005, USA
[13] Cho, S. P., Hong, S. C., & Hong, S. I.; "Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds"; Applied Catalysis B: Environmental, 39, 2002, 125–133
[14] Delnavaz M., Ayati B., Ganjidoust H., Sanjabi S., "Comparison between epoxy and waterproof sealers in TiO2 immobilization on concrete surface for treating phenolic wastewater by photocatalytic process"; Modares Civil Engineering Journal, 11(2), 2011, 17-28
[15] Wang, X., Liu, Y., Hu, Z., Chen, Y., Liu, W., Zhao, G., "Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities", Journal of  Hazardous Materials, 169 (1-3), 2009, 1061–1067
[16] Adamek, E., Baran, W.,  ZiemiaNska, J., Sobczak, A., " The Comparison of Photocatalytic Degradation and Decolorization Processes of Dyeing Effluents"; International Journal of Photoenergy; 2013, 2013, Article ID 578191, 11 pages; http://dx.doi.org/10.1155/2013/578191
 
 
[18] Chen C.Y.; "Photocatalytic degradation of Azo Dye Reactive Orange 16 by TiO2"; Water, Air, and Soil Pollution; 202, 2009, 335–342.
[19] Nan Chong M.N., Jin B., Saint C.P., " Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst"; Chemical Engineering Journal, 171, 2011, 16-23
[20] Sung P.C., Sung C.H., Suk-In H. "Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds"; Applied Catalysis, Environmental. 39, 2002, 125–133
[21] Jia C., Wang Y., Zhang C., Qin Q.; "UV-TiO2 Photocatalytic degradation of landfill leachate", Water Air Soil Pollut 217, 2011, 375–385
[22] Zaman, B., Purwanto, S. M.;  “Potential treatment system for ammonia in leachate, A Case Study for Jatibarang Landfill, Central Java”; Journal of Applied Environmental and Biological Sciences; 2(7),2012, 320-325.
 [23] Delnavaz M., "Photo catalysis of wastewater containing phenol mediated by nano TiO2 fixed to concrete surface", Ph.D. Thesis of Civil & Environmental Engineering, Tarbiat Modares University, 2011
[24] Sanchez M; Rivero.M.J; Ortiz.I; "Photocatalytic oxidation of grey water over titanium dioxide suspensions"; Desalination; 262(1-3), 2010, 141–146.
[25] Shaeri, A.M., and Rahmati, A., (2012). “Human’s Environmental Laws, Regulations, Criteria and Standards.” Department of Environment (DOE), Hak publishing Co., Tehran, 275-279.
[26] Nadi B.; Pirasteh S.; Shamshiry E.; "Investigated environmental management for landfill leachate"; Research Journal of Chemistry and Environment;  15(2), 2011, 1-3
 [27] Parsons S., "Advanced oxidation processes for water and wastewater treatment", IWA Publishing, Cornwall, UK, 2004.
 [28] M. Carrier,N. Perol, J.-M. Herrmann, C. Bordes, S. Horikoshi, J.O. Paisse, R. Baudot, C. Guillard, "Kinetics and reactional pathway of imazapyr photocatalytic degradation influence of pH and metallic ions ", Applied Catalysis B Environmental 65(1-2), 2006, 11–20
[29] Merabet S., Bouzaza A., Wolbert D.; "Photocatalytic degradation of indole in a circulating upflow reactor by UV/TiO2 process- Influence of some operating parameters"; Journal of Hazardous Materials 166(2-3), 2009, 1244–1249
[30] Jia C., Wang Y., Zhang C.; "UV-TiO2 photocatalytic degradation of landfill leachate"; Water, Air, and Soil Pollution; 217, 2011, 375–385.
[31] Cho S. P., Hong S. C., Hong S.I.; "Photocatalytic degradation of the landfill leachate containing refractory matters and nitrogen compounds"; Applied Catalysis B: Environmental; 39, 2002, 125–133.
[32] Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Weber, J.V., "Photocatalytic mineralization of humic acids with TiO2: Effect of pH, sulfate and chloride anions"; International Journal of Photoenergy; 5(2), 2003, 69-74.
[33] Li Puma G., Puddu V., Tsang H..K., Gora A., Toepfer B.; "Photocatalytic oxidation of multicomponent mixtures of estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation: Photon absorption, quantum yields and rate constants independent of photon absorption"; Applied Catalysis B: Environmental; 99, 2010, 388–397.
 [34] Soroush F.; "Photo catalysis of petroleum wastewater by nano TiO2 fixed to concrete surface"; M.Sc. Thesis of Civil & Environmental Engineering, Tarbiat Modares University, 2012