کاربرد کربن فعال پوسته های گردو و بادام در حذف رنگزای آبی مستقیم 71 : سینتیک و ایزوترم جذب

نویسندگان
دانشگاه تربیت مدرس
چکیده
رنگزاهای موجود در پساب خروجی از صنعت نساجی شامل طیف وسیعی از آلاینده ها و ترکیب سمی و سخت
تجزیه پذیر بوده که سبب اختلال در محیط زیست میشود
.
استفاده از جاذبهایی مانند پوستههای گردو و بادام که سالانه قسمت
وسیعی از ضایعات کشاورزی را شامل میشود، روشی مناسب برای تصفیه فاضلاب این صنعت است


.
در این پژوهش از پوستههای
زمان تماس و ،


pH استفاده شد و اثر عوامل Direct Blue 0/4 ) به عنوان جاذب در حذف رنگزای 71 -2/38 mm)
گردو و بادام دانهای
معادل


pH دوز جاذب بر میزان راندمان حذف بررسی شد.
بیشینه راندمان حذف رنگزای مورد نظر به وسیله ی جاذب پوسته گردو در

pH
50 در مدت زمان 45 دقیقه و در حضور جاذب پوسته بادام در mg/L 0 گرم بر لیتر با غلظت اولیه رنگزا برابر / 9 با دوز جاذب
75
50


در مدت زمان 60 دقیقه به ترتیب برابر 55 و 60 درصد به mg/L معادل 9 با دوز جاذب 1
گرم بر لیتر با غلظت اولیه رنگزا برابر
دست آمد


.
در پایان شرایط بهینه حذف رنگزا بر روی هر کدام از جاذبهای تهیه شده در آزمایشگاه و جاذبهای پودری پوسته های
گردو و بادام انجام شد و نتایج حاصل با کربن فعال دانهای تجاری خریداری شده مقایسه شد


.
با بررسی نتایج حاصل در زمان تعادل
با مدلهای ایزوترم لانگمایر، فرندلیچ، تمکین و دوبینین


-
رادوشکویچ و با توجه به بیشترین ضریب همبستگی مشخص شد که دو
جاذب پوستههای گردو و بادام از مدل ایزوترم فرندلیچ و تمکین تبعیت میکنند که نشاندهنده ناهمگن بودن سطح جاذب است



.
28


به mg/gr 26 و mg/gr
حداکثر ظرفیت جذب سطحی تک لایه کربن فعال حاصل از پوستههای گردو و بادام به ترتیب در حدود
دست آمد


. سینتیک جذب سطحی دو جاذب نیز از مدل سینتیکی شبه مرتبه دوم تبعیت نمود
.

کلیدواژه‌ها


عنوان مقاله English

Use of Walnut and Peanut Shells Activated Carbon in Direct Blue71 Removal: Kinetic and Isotherm

نویسندگان English

S.N. Larimi
B. Ayati
Tarbiat Modares Univ
چکیده English

Most of dyes used in production processes caused serious environmental pollution when
discharged to the water resources. Azo dyes are the most used synthetic compounds in the
industries such as textile, food, leather and cosmetic. Due to their toxicity and hard
degradation, these kinds of compounds are classi
fied as environmental hazardous materials
that have to be treated before discharging to the environment.
Direct blue 71 (DB 71) is one of azo dyes that is resistant to aerobic degradation and under
anaerobic condition is reduced to potential carcinogenic aromatics.
Different kinds of physical, chemical and biological methods such as adsorption,
ultra
filtration, reverse osmosis, coagulation and electro coagulation are widely used for
efficient dye removal but they just transport contaminants from water to sludge and generate
secondary wastes which need more treatment. Adsorption with many advantages is a proper
method that is applied to treat dye compounds. In recent years, use of low cost materials as
adsorbent for dye removal has been highlighted.
Since natural absorbents are inexpensive and may be achieved without any cost and they
are usually in abundance in nature, absorption of solute ions by these materials are a proper
method to eliminate color from polluted waters and industrial wastewaters.
In this study, removal of azo dye Direct Blue 71 was evaluated with two new natural
adsorbents of walnut and peanuts shells. These adsorbents are produced from agricultural
wastes. The effect of pH, contact time and adsorbent dosage on the removal efficiency has
been studied. According to the results, maximum removal of dyes by the two natural
absorbents (0.75 gr/L walnut shell in 50 mg/L initial dye concentration with pH of 9 in 45
minutes and 1 gr/L peanut shell in 50 mg/L initial dye concentration with pH of 9 in 60
minutes) was 55 and 60 percent, respectively.
Comparison of prepared adsorbent in the laboratory and commercial ones in optimum
condition have similar dye removal efficiency that means suitable and cheap adsorbent could
be prepared in the laboratory. Removal efficiency of DB71 was also obtained 85 and 83 by
the two walnut and peanut shells adsorbent powder, respectively.
The results have also shown that amongst four isotherms of Langmuir, Freundlich, Temkin
and Dubinin-radushkevich, Freundlich isotherm has the highest correlation coefficient which
implying heterogeneous surface of adsorbent for both sorbents. It has also shown that the
maximum surface adsorbent capacity for the monolayer of activated carbon of the walnut and
peanut shells were 26 and 28 mg/gr, respectively. From the n values 3.58 and 3.72 of the
Freundlich isotherm for both adsorbent of walnut and peanut shells, it could be concluded that
physical adsorption process has been happened. The data could also indicate that pseudosecond-
order was the best adsorption kinetics model for the two adsorbents

کلیدواژه‌ها English

pH
dye concentration
adsorbent dosage
activation
Schoeberl,P., Brik, M., Braun, R., Fuchs, W., (2004),
''Treatment and recycling of textile wastewater case
study and development of a recycling concept'',
Desalination, 171: 173-183.
[2] Buitron, G., Quezada, M., Moreno, G., (2004),
''Aerobic degradation of the azo dye acid red 151 in a
sequencing batch biofilter'', Bioresource Technology,
92: 143-149.
[3] Nadu, Tamil.,(2007), ''Modern effluent treatment
methods for processors'', The Indian Journal
Textile,India.
[4] Sathishkumar, P., Pugazhenthiran, N., Mangalaraja, R.,
Asiri, A., Anandan, S., (2013), ''ZnO supported
CoFe2O4 nanophotocatalysts for the mineralization of
Direct Blue71 in aqueous environments'', Journal of
Hazardous Materials, 252: 171-179.
[5] Benguella, B., Yacouta-Nour, A., (2009), ''Adsorption
of bezanylred and nylominegreen from aqueous
solutions by natural and acid-activated bentonite'',
Desalination,235: 276-292.
[6] Klavarioti, M., Mantzavinos, D., Kassinos, D., (2009),
''Removal of residual pharmaceuticals from aqueous
systems by advanced oxidation processes'',
Environment International, 35: 402-417.
[7] Robinson, T., McMullan, G., Marchant, R., Nigam, P.,
(2001), ''Remediation of dyes in textile e.uent: A
critical review on current treatment technologies with a
proposed alternative'', Bioresource Technology, 77:
247-255.
[8] Kabara K., Chaudhary R., Sawhney. R.L., (2004),
''Tretment of hazardous organic and inorganic
compounds through aqueous-phase photocatalysis: A
review'', Ind. Eng. Chem. Res., 43: 7683-7696.
[9] Bao, Y., Zhang, G., (2012), ''Study of Adsorption
Characteristics of Methylene Blue onto Activated
Carbon Made by Salix Psammophila'', Energy
Procedia, 16: 1141-1147.
[10] Yang, J., Qiu, K.,(2010).,''Preparation of activated
carbons from walnut shells via vacuum chemical
activation and their application for methylene blue
removal''., Chemical Engineering Journal, 169: 209-
217.
[11] Luna, M., Flores, E., Genuino, D., Futalan, C., Wan,
M., (2013), ''Adsorption of Eriochrome Black T
(EBT) dye using activated carbon prepared
fromwaste rice hulls—Optimization, isotherm and
kinetic studies'', Journal of the Taiwan Institute of
Chemical Engineers, 44: 646-653.
12 ]
کافی ذبیحاله، گنجی دوست حسین، آیتی بیتا، ]
1390 )
، "رنگبری پساب واحدهای رنگرزی )
نساجی با استفاده از خاک رس و خاک اره
"، مجله
علمی پژوهشی عمران مدرس، دوره یازدهم ،
.
شماره 3
[13] Wang, L., (2012), ''Application of activated carbon
derived from ‘waste’ bamboo culms for the
adsorption of azo disperse dye: Kinetic, equilibrium
andthermodynamic studies'', Journal of
Environmental Management, 102: 79-87.
[14] Bibek, D., (2010), ''Competitive adsorption of
dyes(congo red, methylene blue, malachitegreen) on
activated carbon'', National Institute of Technology,
Rourkela, India.
[15]
 
Bulut, Y., Gozubenli, N., Aydın, H., (2007),
 
''Equilibrium and kinetics studies for adsorption of
direct blue 71 from aqueous solution by wheat
shells'', Journal of Hazardous Materials, 144: 300-
306.
[16] Saien, J., Soleymani, A., (2007), ''Degradation and
mineralization of Direct Blue 71 in a circulating
upflow reactor by UV/TiO2 process and employing a
new method in kinetic study'', Journal of Hazardous
Materials, 144: 506-512.
[17] Behera, S.K., Kim, J.H., Guo, X., Park, H.S., (2008),
''Adsorption equilibrium and kinetics of polyvinyl
alcohol from aqueous solution on powdered activated
carbon'', Journal of Hazardous Materials, 153: 1207–
1214.
[18] Kant, R., Rattan, V., (2009), ''Adsorption of dye
green B from a textile industry effluent using two
different samples of activated carbon by static batch
method and continuous process'', Indian Journal of
Chemistry Technology, 16: 240-244.
[19] Brando, P., Souza, T., Ferreira, A., Hori,
C.,Romanielo, L., (2010), ''Removal of petroleum
hydrocarbons from aqueous solution using
sugarcanebagasse as adsorbent'', Journal of
Hazardous Materials, 175: 1106-1112.
[20] Ahmed, M., Theydan, S., (2013), ''Equilibrium
isotherms studies for light hydrocarbons adsorption
on 4A molecular sieve zeolite'', Journal of Petroleum
Science and Engineering, 112: 114-119.
[21] ASTM D3838-05, (2011), Stndard test method for
pH of activated carbon, book of standards, Volume:
15.01.
 
( 22 ] شفیعی الهام نیستانک، نادر مختارانی، ( 1391 ]
با
MTBE "بررسی پالایش خاک های آلوده به
فرایندخاک شویی
"، سومین همایش ملی مدیریت
پساب و پسماند در صنایع نفت و انرژی، مرکز
همایشهای صدا و سیما، تهران
.
[23] Sanchez, M., Utrilla, R., (2003), ''Effect of the
ozone–carbon reaction on the catalytic activity of
activated carbon during the degradation of1,3,6-
naphthalenetrisulphonic acid with ozone'', Carbon,
41: 303-307.
[24] Li, Y.,Dua, Q.,Liua, T.,Peng, X., Wang, Junjie.,Suna,
J.,Wanga, Y.,Wua, S.,Wanga, Z.,Xia,Y., Xia, L.,
(2013), ''Comparative study of methylene blue dye
adsorption ontoactivated carbon, graphene oxide, and
carbon nanotubes'', chemical engineering research
and design, 91: 361-368.
[25] Faria, P.,Orfao, J., Pereira, M., (2007),''Ozonation of
aniline promoted by activatedcarbon'', Chemosphere,
67: 809-815.
26 ]
سیاح زاده امیر حسین، گنجی دوست حسین، آیتی ]
بیتا،
"بهینهسازی تولید کربن فعال از پوست بادام در
جذب آلایندههای محلول نفتی
"، مجله علمی
پژوهشی آب و فاضلاب اصفهان، در دست چاپ
.
27 ]
بابایی زارچ حمیدرضا، گنجی دوست حسین، آیتی ]
بیتا،
( 1392 )، "مقایسه قابلیت جاذبهای طبیعی خاک
اره و خاکستر در حذف سرب
"، مجله علمی پژوهشی
عمران مدرس، دوره سیزدهم، ویژهنامه بهار