براورد اثر ساختگاه‌های دره‌ای بر امواج لرزه‌ای

نویسندگان
1 دانشگاه تربیت مدرّس
2 دانشگاه تربیت مدرس
چکیده
چکیده- زمین با سطوح توپوگرافی نامنظم، یکی از عوامل پاسخ­های لرزه ای پیچیده است. دلیل اصلی ایجاد پاسخ لرزه­ای پیچیده، مسئله انتشار و پراکنش امواج در این سطوح است. در این نوشتار، با فرض این که زمین مورد مطالعه، همسان گرد، همگن، و ارتجاعی است، نخست فرمول­بندی امواج منتشرشده در یک میدان موج SH دوبعدی، با استفاده از روش المان مرزی مستقیم و به کمک بسط سری نیومن بیان شده است. سپس برای صحت­سنجی برنامه­ی توسعه داده شده در این پژوهش، تحلیل­های عددی متنوعی برای دره­ها و تپه­هایی با شکل­های مختلف ارائه شده است. لازم است گفته شود که مسئله­ی بالا در قلمروی بسامد حل شده و با شکل­های مختلف نیم­دایره، مثلث و نیم بیضی بررسی شده است. نتایج به دست آمده از پژوهش با سایر جواب­های تحلیلی و عددی موجود مقایسه شده است. مقایسه­های انجام شده دقت روش پیشنهادی بوده و نشان می­دهد که روش المان مرزی بر اساس بسط سری نیومن با در نظر گرفتن فقط دو جمله اول این سری، به نتایج مطلوبی منجر می­شود.

کلیدواژه‌ها


عنوان مقاله English

Evaluation of Canyon Site Effects on Seismic Waves

نویسندگان English

N. Khaji 1
M. Amini 2
1 Tarbiat Modares University
2 Tarbiat Modares University
چکیده English

It is well known that ground surface with irregular topographic features causes complicated seismic responses. The complex seismic response is mainly caused by wave scattering. In this study, for a homogeneous, isotropic, linearly elastic half-space, the formulation of a two-dimensional SH-wave field based on the direct boundary element method and Neumann series expansion is developed. By discretizing the ground surface to boundary elements, the boundary integral equation is formulated into a general matrix form. This general matrix form is then reduced to a more efficient form, which considerably reduces the size of the computational matrices using Neumann series expansion. For this purpose, a Fortran computer program is developed, whose accuracy and feasibility in the frequency domain is shown by some numerical analyses conducted for grounds with semicircular convex and concave, and symmetrical V-shaped canyon topographical configurations. Comparing the results of the present study with those available in the literature shows the accuracy of the present study by just considering two first terms of Neumann series expansion. The minor differences of the results of the present research with other reseach results may be assigned to the number of terms of Neumann series expansion and the order of used boundary elements. In other words, if the number of terms of Neumann series expansion and the order of used boundary elements incease, the accuracy of the numerical results may enhance. Based on the results of the present research for various parameters of different two-dimensional canyons, the following conclusions may be obtained:

When the exciting frequency increases, the wave-length decreases. As a result, the violence effects of incident wave due to canyon effects may be significant for a given canyon. Moreover, the displacement field of various canyon points follows more complicated pattern. On the other hand, for smaller exciting frequencies with larger wave-lengths, the canyon effects as the main cause of disturbation source are not so remarkable, and the displacement field of various canyon points are smoother.
The effects of incident wave angle is also remarkable on the disturbation patterns of displacement field of different canyon points. When the angle increases, the triangle canyons experience more complicated patterns compared to semicircular canyons.
Analyses' results show important effects of shape and depth of various canyons. These effects are more considerable when depth's variations are remarkable in comparison with the wave-length of incident wave. Furthermore, the mentioned effects are functions of frequency and angle of incident wave.

- مراجع
[1]  Tarinejad R, Ahmadi MT, Khaji N, 2007. Analysis of Topographic Amplification Effects on Canyon Sites using 3D Boundary Element Method. Journal of Seismology and Earthquake Engineering, 9(1): 25–37.
[2]  Boore DM, 1972. A note on the effect of simple topography on seismic SH waves. Bulletin of the Seismological Society of America, 62(1): 275–284.
[3]  Trifunac MD, 1973. Scattering of plane SH-waves by a semi-cylindrical canyon. Earthquake Engineering and Structural Dynamics, 1: 267–281.
[4]  Wong HL, Jennings PC, 1975. Effects of canyon topography on strong ground motion. Bulletin of the Seismological Society of America, 65(5): 1239–1257.
[5]  Wong HL, 1982. Effect of surface topography on the diffraction of P, SV, and Rayleigh waves. Bulletin of the Seismological Society of America, 72(4): 1167–1183.
[6]  Sanchez-Sesma FJ, Campillo M, 1991. Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation. Bulletin of the Seismological Society of America, 81(6): 2234–2253.
[7]  Takemiya H, Fujiwara A, 1994. SH-wave scattering and propagation analyses at irregular sites by time domain BEM. Bulletin of the Seismological Society of America, 84(5): 1443–1455.
[8]  Reinoso E, Wrobel LC, Power H, 1997. Two-dimensional scattering of P, SV and Rayleigh waves: preliminary results for the valley of Mexico. Earthquake Engineering and Structural Dynamics, 26: 595–616.
[9]  Athanasopoulos GA, Pelekis PC, Leonidou EA, 1999. Effects of surface topography on seismic round response in the Egion (Greece) 15 June 1995 earthquake. Soil Dynamics and Earthquake Engineering, 18: 135–149.
[10] Tadeo A, Santos P, Antonio J, 2001. Amplification of elastic waves due to point source in the presence of complex surface topography. Computers and Structures, 79: 1697–1712.
[11] Gazetas G, Kallou PV, Psarropoulos PN, 2002. Topography and soil effects in the MS 5.9 Parnitha (Athens) Earthquake: The Case of Adámes. Natural Hazards 27: 133–169.
[12] Zepeda SA, Montalvo-Arrieta JC, Sanchez-Sesma FJ, 2003. A hybrid indirect boundary element—discrete wave number method applied to simulate the seismic response of stratified alluvial valleys. Soil Dynamics and Earthquake Engineering, 23: 77–86.
[13] Rubio S, Sanchez-Sesma FJ, Jose Benito J, Alarcon E, 2004. The direct boundary element method: 2D site effects assessment on laterally varying layered media (methodology). Soil Dynamics and Earthquake Engineering, 24: 167–180.
[14] Bouckovalas GD, Papadimitriou AG, 2005. Numerical evaluation of slope topography effects on seismic ground motion. Soil Dynamics and Earthquake Engineering, 25: 547–558.
[15] Fu LY, 2005. Rough surface scattering: comparison of various approximation theories for 2D SH waves. Bulletin of the Seismological Society of America, 95(2): 646–663.
[16] Kamalian M, Jafari MK, Sohrabi-bidar A, Razmkhah A, Gatmiri B, 2006. Time-domain two-dimensional site response analysis of non-homogeneous topographic structures by a hybrid BE/FE method. Soil Dynamics and Earthquake Engineering, 26: 753–765.
[17] Gatmiri B, Arson C, Nguyen KV, 2008. Seismic site effects by an optimized 2D BE/FE method I. Theory, numerical optimization and application to topographical irregularities. Soil Dynamics and Earthquake Engineering, 28: 632–645.
[18] Brebbia CA, Walker S, 1980. Boundary Element Techniques in Engineering, Butterworth Co. Ltd., London, United Kingdom.
[19] Brebbia CA, Dominguez J, 1992. Boundary Elements: An Introductory Course,” Computational Mechanics Publications, Southampton, United Kingdom.
[20] Kato T, 1980. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin.
[21] Tsaur DH, Chang KH, 2008. An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: shallow case. Geophysical Journal International, 174: 255–264.