تعیین فرکانس طبیعی تیرهای فولادی با اتصال گیر دار برای کنترل ارتعاش کف با استفاده از شبکه های عصبی مصنوعی

نویسندگان
1 دانشجوی دکتری مهندسی زلزله دانشگاه سمنان
2 عضو هیئت علمی و مدیر گروه پژوهشی فناوری های نوین ساختمان دانشگاه سمنان
3 دانشجوی دکتری مهندسی سازه دانشگاه سمنان
چکیده
ارتعاش محسوس تیرهای باربر فولادی در دهانه های بزرگ امری ناخوشایند در ساختمان ها است. حتی اگر محاسبات مربوطه به این تیر ها از نظر مقاومت و معیارهای کنترل تغییر شکل طبق آیین نامه به خوبی صورت گرفته باشد، با این وجود ممکن است هنگام عبور افراد دچار نوساناتی گردند. مبحث دهم مقررات ملی ساختمان رابطه ای برای کنترل ارتعاش تیرهای با اتصال مفصلی در حالت بهره برداری ارائه کرده است اما برای تعیین فرکانس تیرهای با اتصالات گیردار روابطی را بیان نکرده است. از آنجا که این تیرها سهم قابل توجهی از قابهای ساختمانی را به خود اختصاص می دهند، کنترل ارتعاش آنها از اهمیت خاصی برخوردار می باشد. روابط ارائه شده در تحقیقات سال های اخیر برای تعیین فرکانس تیر های گیردار دارای پیچیدگی های زیاد می باشد که استفاده از آنها برای کنترل ارتعاش سقف ها مشکل است. در این مقاله رابطه ارائه شده در آیین نامه ی طرح و اجرای ساختمان های فولادی ایران بررسی شده است، همچنین با استفاده از تحلیل دینامیکی، روش اجزای محدود و شبکه های عصبی روابطی برای تعیین فرکانس تیر های دو سر گیر دار و کنسول پیشنهاد گردیده است. مقایسه فرکانس حاصل از روابط مورد نظر با داده های بدست آمده از شبکه عصبی با خطای بسیار کم همراه بود که حاکی از دقت بالای روابط معرفی شده می باشد. پس پیشنهاد می گردد برای محاسبه فرکانس طبیعی تیرهای کنسول و دو سر گیر دار جهت کنترل ارتعاش سقف های ساختمانی از روابط معرفی شده در این مقاله استفاده گردد.

کلیدواژه‌ها


عنوان مقاله English

Determination of the natural frequency of the moment connections steel beams by artificial neural networks

نویسنده English

Abbas Sivandi Pour 1
چکیده English

Sensible vibration of steel beams in long spans is undesirable issue in the buildings. These beams may be vibrated during people passage, although the strength calculations of this beams to be performed, accurately and drift control index based on buildings codes to be considered. Iranian Steel Buildings Code has offered a formula for controlling of vibration of beams in building frames with pin connections in serviceability phase. However, this code has not presented criteria for beams include fixed connections. Since these beams have the considerable portion of building frames, their vibration control needs special attentions. The presented equations for determination of beams frequency are complicated and have been not used for control of buildings floor vibration. In this paper, the mentioned formula in forenamed codes has been discussed. The dynamic analysis, finite element method (FEM) and artificial neural networks (ANN) techniques have been adopted to constitute the frequency equations of the fix ends and cantilever steel beams. Comparison of resulted frequency from presented equations and ANN showed that the error is low. Furthermore, it is suggested that use proposed equations for determination of frequency of moment connection beams.

کلیدواژه‌ها English

Cantilever beam
Finite Elements
artificial neural networks
natural frequency
fixed beam
[1]    C.J. Middleton, J.M.W. Brownjohn. “Response of high frequency floors: A literature review”. Engineering Structures 32 (2010) 337_352.
[2]    C. T. Nguyen, J. Moon, V. NamLe, H. Lee. “Natural frequency for torsional vibration of simply supported steel I-girders with intermediate bracings”, Journal of Thin-Walled Structures 49 (2011) 534-542.
[3]    Farzad Naeim. “Design practice to prevent floor vibrations”. Structural Steel Educational Council. 1991.
[4]    Murray TM, Allen DE, Ungar EE. Floor vibrations due to human activity. AISC American Institute of Steel Construction. 1997.
[1]    Canadian Standards Association, Guide for floor vibrations. CSA Standard CAN 3-S16.1-89. Steel structures for buildings-limit state design. 1989.
[2]   مقررات ملی ساختمان مبحث دهم (طرح و اجرای ساختمان های فولادی)، وزارت مسکن و شهرسازی، 1387.
[3]    Heins CP, Sahin MA. “Natural frequency of curved box girder bridges”. Journal of Structural Engineering, ASCE 105 (1979);. 2591–600.
[4]    M.S. Abdel-Jaber. “Nonlinear natural frequencies of an elastically restrained tapered beam”. Journal of Sound and Vibration 313 (2008) 772-783.
[5]    K.Y. Yoon, N.H. Parkb,Y.J. Choi,Y.J. Kang. “Natural frequencies of thin-walled curved beams”. Journal of Finite Elements in Analysis and Design 42 (2006) 1176-1186.
[6]      Haijuan Duan. “Nonlinear free vibration analysis of asymmetric thin-walled circularly curved beams with open cross section”. Journal of Thin-Walled Structures 46 (2008) 1107-1112.
Veletsos AS, Newmark NM. Natural frequencies of continuous flexural members”. Transactions of the American Society of Civil
[1]      Engineers 112 (1957) 249-278.
[2]      J. Przybylski, “Non-linear vibrations of a beam with a pair of piezoceramic actuators”, journal of Engineering Structures; 2009.
[3]      R.W. Clough and J. Penzien, “Dynamics of structures”, McGraw-Hill ;1975 .
[4]      V.P. Singh, S. Chakraverty, R.K. Sharma, G.K. Sharma. “Modeling vibration frequencies of annular plates by regression based neural network”. Applied Soft Computing 9 (2009) 439-447.
[5]      AlokMadan. “Vibration control of building structures using self-organizing and self-learning neural networks”. Journal of Sound and Vibration 287 (2005) 759–784.
[6]      ANSYS. User’s Manual. Version 10.0. Houston: Swanson Analysis Systems Inc. 2006.
[7]      H.M. Gomesa and A.M. Awruch, “Comparison of response surface and neural network with other methods for structural reliability analysis”, Struct Saf; 2004.
[8]      MATLAB R2009a, Users Manual, The Math Works, Inc., 2009.