اثر ریزدانه‌های غیرچسبنده بر رفتار فشار آب حفره‌ای ماسه‌های اشباع

نویسندگان
1 دانشگاه اراک
2 دانشگاه صنعتی امیرکبیر
چکیده
چکیده- کرنش های برشی به­وجود آمده ناشی از زلزله باعث ایجاد اضافه­فشار آب حفره ای در لایه های خاک می شوند. در این پژوهش نتایج آزمایش­های سه­محوری کنترل کرنش انجام­شده روی خاک­های ماسه ای دارای لای ارائه شده است. آزمایش های انجام­شده برای بررسی ویژگی­های فشار آب حفره ای ماسه های دارای لای در اثر بارگذاری، دوره­ای است. نمونه های ماسه ای استفاده­شده 0، 10، 20 و 30 درصد لای دارد. نتایج نشان می دهد که نسبت تخلخل نمونه ها با افزایش درصد ریزدانه هنگام فرایند اشباع و تحکیم، کاهش یافته و این اثر با افزایش درصد لای افزایش می یابد. همچنین فشار آب حفره ای ایجادشده، با افزایش ریزدانه، حدود 10 درصد کاهش می یابد. با مقدار ریزدانه بین 10 تا 30 درصد، به­دلیل افزایش نسبت تخلخل اسکلت ماسه ای به بیش از نسبت تخلخل بیشینه ماسه تمیز، اضافه­فشار حفره ای، افزایش یافته و تماس بین دانه های ماسه، رفته­رفته حذف و پاسخ نمونه به وسیله­ی ماتریس لای کنترل می شود.

کلیدواژه‌ها


عنوان مقاله English

The Effect of Non-Plastic Fines on Pore Pressure Generation Characteristics in Saturated Sands

نویسندگان English

M. Derakhshandi1 1
S.M. Mirhosseini 2
1 Arak University
2 Amirkabir University
چکیده English

Abstract: Liquefaction is one of the most important phenomena that occurs during earthquakes. Loose granular soils along with a high ground water level make soil deposits susceptible to liquefaction. Liquefaction occurs due to an increase in excess pore water pressure and decreases in effective stress in the soil deposit. Thus, pore water pressure generation has significant affects on the shear strength, stability, and settlement characteristics of a soil deposit, even if it does not cause full liquefaction in the soil. Most natural sands and artificial soil deposits like hydraulic fills contain some plastic and non-plastic fines, which make their behavior different from clean sands. The generation of pore water pressure in a saturated soil beneath level ground during an earthquake is generally assumed to be due to the cyclic shear strains. This study presents the results of strain-controlled cyclic triaxial tests on silty sands to evaluate pore pressure generation characteristics of these material sands under cyclic loading. Strain-controlled testing allows for a more fundamental assessment of pore pressure generation because of the strong relationship between shear deformation and pore pressure generation. The cyclic triaxial tests were performed on the specimens including mixtures of Monterey #0/30 sand and 0%, 10%, 20%, and 30% of Sil-Co-Sil 52 non-plastic silt. To prepare the specimens, wet tamping Undercompaction technique was used. In this method, each layer is compacted to a lower density than the final desired value by a predetermined amount, which is defined as the percent of undercompaction. The advantages of this method are minimizing particle segregation, preparing specimens in wide ranges of density, and making uniform specimens. In addition, all of the specimens were prepared at an initial relative density =50%. The specimens were subjected to 50 at cycles of axial strain at loading rate of 0.1 Hz. Axial strain was measured by a miniature LVDT and this value converted to shear strain using elasticity theory and a Poisson’s ratio of 0.5 for undrained condition ( =1.5. ). The specimens were subjected to various levels of shear strains ranging from 0.003% to 0.3%. The results show that overall void ratio decreases during the saturation and consolidation process, this effect increasing with increasing silt content. Also, excess pore water pressure decreases with increasing silt content up to 10%. At silt contents greater than 10% up to 30%, excess pore pressure increased because, the sand skeleton void ratio is greater than the maximum void ratio of the clean sand, thus the sand grain-to-grain contact is removed and the response is controlled by the silt matrix.

کلیدواژه‌ها English

Cyclic Triaxial
Liquefaction
Non-plastic fines
Pore water pressure
Strain-controlled tests
5- مراجع
[1]  Lee KL, Seed HB (1967), “Cyclic Stress Conditions Causing Liquefaction of Sand”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM1, pp. 47-70.
[2]  Seed HB (1968), “Landslides During Earthquakes Due to Liquefaction”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM5, pp. 1053-1122.
[3]  Seed HB, and Idriss IM (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273.
[4]  Finn WDL, Pickering DJ, Bransby PL, (1971), “Sand Liquefaction in Triaxial and Simple Shear Tests,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM4, pp. 639-659.
[5]  Youd TL (1975), “Liquefaction, Flow and Associated Ground Failure,” Proceedings of the U. S. National Conference,” Ann Arbor, MI, USA, June, pp. 146-155.
[6]  Yamamuro JA, Covert KM (2001), “Monotonic and Cyclic Liquefaction of Very Loose Sands with High Silt Content”, Journal of Geotechnical and Geoenvironmental, Engineering, Vol. 127, No. 4, April, 2001.
[7]  Kuerbis RH, Negussey D, and Vaid YP (1988) “Effect of Gradation and Fines Content on the Undrained Response of Sand,” Geotechnical Special Publication, ASCE, No. 21, pp. 330-345.
[8]  Kenney TC (1977), “Residual Strength of Mineral Mixtures,” Proceedings, the 9th International Conference on Soil Mechanics and Foundation Engineering,” Tokyo, Vol. 1, pp. 155-160.
[9]  Derakhshandi M, Rathje EM, Hazirbaba K, Mirhosseyni S.M (2008), “The Effect of Plastic Fines on Pore Pressure Generation Characteristics in Saturated Sands”, Soil Dynamics and Earthquake Engineering, Vol.28, No.5, pp.376-386.
[10]  Hazirbaba, K.,Rathje E.M., (2009), “Pore Pressure Generation of Silty Sands due to Induced Cyclic Shear Strains” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.12, pp.1892-1905.
[11]  Dash HK, Sitharam TG (2009), “Undrained Cyclic Pore Pressure Response of Sand-Silt Mixtures: Effect of Nonplastic Fines and Other Parameters”, Geotechnical and Geological Engineering, Vol.27, No.4, pp.501-517.
[12]  ASTM D 4254 (2000), “Standard Test Methods for Minimum Index Density and Unit Weight of and Calculation of Relative Density”.
[13]  ASTM D 4253 (2000), “Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table”.
[14]  Ladd RS (1978), “Preparing Test Specimens Using Undercompcation,” Geotechnical Testing Journal, GTJODJ, Vol. 1, No. 1, pp. 16-23.
[15]  Pitman TD, Robertson PK, Sego DC (1994), “Influence of fines on the collapse of loose sands”, Canadian Geotechnical Journal, Vol. 31, pp.728–739.
[16]  Lade PV, Yamamuro JA (1997). ‘‘Effects of nonplastic fines on static liquefaction of sands’’, Canadian Geotechnical journal, Vol.34, No.6, pp.918–928.
[17]  Dobry, R (1985), "Liquefaction of Soils During Earthquakes", National Research Council (NRC), Committee on Earthquake Engineering, Report No. CETS-EE-001, Washington DC.