کنترل آسیب و رفتار لرزه‌ای دیوار برشی بتن مسلح مرکزگرا دارای عضو فولادی تعویض‌پذیر با استفاده از تحلیل عددی غیرخطی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه تربیت مدرس
2 استاد دانشگاه تربیت مدرس
چکیده
کاربرد سیستم‌های کنترل غیرفعال برای افزایش پایداری و ایمنی سازه‌ها در برابر نیروهای ناشی از زلزله همواره مورد توجه محققان بوده است. از طرفی دیگر، در سال‌‌های اخیر، سیستم‌های لرزه‌بر جدیدی با عنوان سیستم‌های مرکزگرا به نحوی توسعه یافته‌اند که ضمن قابلیت جذب انرژی و کاهش یا حذف تغییرشکل‌های ماندگار، بتوانند دارای منحنی چرخه‌ای پرچمی شکل باشند. یکی از کاستی‌های سیستم مرکزگرا عدم موفقیت در کاهش یا جلوگیری از وارد آمدن آسیب به اعضای اصلی سازه است که می توان با ترکیب سیستم های کنترل غیر فعال به عنوان المان مقاوم و مستهلک کننده انرژی و سیستم های مرکزگرا، از وارد آمدن آسیب به اعضای اصلی سازه‌ای از جمله دیوارهای برشی بتن مسلح استفاده کرد. در دیوار برشی بتن مسلح مرکزگرا، بتن گوشه‌های پایین دیوار به دلیل نیروهای فشاری متمرکز در آن نواحی مستعد آسیب و خرد شدن است. در نتیجه المان کنترل غیر فعال با هدف حذف این آسیب و تعویض پذیر بودن، جایگزین بتن این نواحی می‌شود. در این مقاله بکارگیری یک عضو تعویض‌پذیر فولادی به عنوان یک سیستم کنترل غیرفعال برای استهلاک انرژی در در پنجه و پاشنه (خالی شده) دیوار برشی بتن مسلح با استفاده از تحلیل عددی غیرخطی مورد بررسی قرار گرفته است. در این بررسی دو دیوار برشی بتن مسلح مرکزگرا کاملا مشابه، یکی دارای عضو تعویض‌پذیر و دیگری بدون عضو تعویض‌پذیر، مورد ارزیابی قرار گرفته‌اند. نتایج بدست آمده نشان می‌دهد که شکل‌پذیری و استهلاک انرژی دیوار دارای عضو تعویض‌پذیر نسبت به دیوار بدون عضو تعویض‌پذیر بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Damage Control and Seismic Behavior of Self-centering RC Shear Wall with Replaceable Steel Member Utilizing Nonlinear Numerical Analysis

نویسندگان English

fahimah Shahpory 1
A. Tasnimi 2
1 tarbiat modares university
2 استاد مهندسی سازه، گروه مهندسی سازه و زلزله، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده English

The use of passive control systems to enhance the safety of structures and their attachments against earthquake-induced damages has gained attention in recent years. On the other hand, new seismic systems called "self-centering systems" have been developed that create a flag-shaped capacity curve by using pre-tension forces and creating a joint in the structural elements. The most important feature of the self-centering system is minimizing damage to the main structural elements and eliminating residual deformations. When these two approaches are combined, passive control systems are employed as energy dissipation devices within the self-centering reinforced concrete shear walls. In elf-centring reinforced concrete shear walls, the concrete at the corners of the walls is susceptible to damage and crushing of concrete due to concentrated compressive forces in those areas. Consequently, passive control elements are used to eliminate this damage and to make these areas more ductile, replacing the concrete. In this paper, the use of a replaceable steel member in the corners of a shear wall is investigated using numerical analysis. The steel member is installed as a passive control system to dissipate energy in the wall's foot and heel regions. Two similar walls, one with a replaceable member and the other without, are analyzed to compare the results. The results show that the wall with a replaceable member has better capacity, ductility, and energy dissipation than the wall without a replaceable member.

کلیدواژه‌ها English

Damage
Seismic behavior
self-centering
replaceable steel member
nonlinear
Numerical analysis
1] Federal Emergency Management Agency, (2000), Prestandard and commentary for the seismic rehabilitation of buildings (FEMA 356), Washington, D.C.#
[2] Federal Emergency Management Agency, (2003), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450), Washington, D.C.#
[3] Federal Emergency Management Agency, (2005), Improvement of nonlinear static seismic analysis procedures (FEMA-440), Washington, D.C. #
[4] Federal Emergency Management Agency, (2009), NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-750), Washington, D.C.#
[5] American Society of Civil Engineers, (2010), Minimum design loads for buildings and other structures (ASCE Standard ASCE/SEI 7-10), Reston, Virginia. [6] Priestley, M. N. (1991), “Overview of PRESSS research program”, PCI journal, 36(4), 50-57. 161    ﺳآ لﺮﺘﻨﻛ ﻴ ﺐ   هزﺮﻟ رﺎﺘﻓر و ا ی   د ﻳ راﻮ   ﺷﺮﺑ ﻲ   اراد اﺮﮔﺰﻛﺮﻣ ﺢﻠﺴﻣ ﻦﺘﺑ ی   ...                                                                          یرﻮﭙﻫﺎﺷ ﻪﻤﻴﻬﻓ   و   ﻲﻤﻴﻨﺴﺗ ﻲﻠﻌﺳﺎﺒﻋ   [7] Ricles J.M., Sause R., Garlock M.M., and Zhao C., (2001). Posttensioned Seismic-Resistant Connections for Steel Frames. Journal of Structural Engineering, 127 (2), pp 113-121. [8] Christopoulos C., Filiatrault A., Uang C., and Folz B., (2002). Posttensioned Energy Dissipating Connections for Moment-Resisting Steel Frames. Journal of Structural Engineering, 128 (9), pp 11111120. [9] Eatherton M.R., Deierlein G.G., Ma X., Krawinkler H., and Hajjar J.F., (2012). Toward a performancebased design framework for self-centering rocking braced-frame spine systems. Proceeding of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. [10] Christopoulos C., Tremblay R., Kim H., and Lacerte M., (2008). Self-centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation. Journal of Structural Engineering, 134 (1), pp 96-107. [11] Kim H. and Christopoulos C., (2008). Friction Damped Posttensioned Self-centering Steel MomentResisting Frames. Journal of Structural Engineering, 134 (11), pp 1768–1779. [12] Christopoulos C., Tremblay R., Kim H., and Lacerte M., (2008). Self-centering Energy Dissipative Bracing System for the Seismic Resistance of Structures: Development and Validation. Journal of Structural Engineering, 134 (1), pp 96-107. [13] Kurama, Y., Sause, R., Pessiki, S., & Lu, L. W. (1999). Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls. Structural Journal, 96(4), 622-632. [14] Restrepo, J. I., Mander, J., & Holden, T. J. (2001). New generation of structural systems for earthquake resistance. In NZSEE 2001 Conference. [15] Restrepo, J. I., & Rahman, A. (2007). Seismic performance of self-centering structural walls incorporating energy dissipators. Journal of Structural Engineering, 133(11), 1560-1570.  [16] Smith, B. J., Kurama, Y. C., & McGinnis, M. J. (2013). Behavior of precast concrete shear walls for seismic regions: comparison of hybrid and emulative specimens. Journal of Structural Engineering, 139(11), 1917-1927.  [17] Guo, T., Zhang, G., & Chen, C. (2014). Experimental study on self-centering concrete wall with distributed friction devices. Journal of Earthquake Engineering, 18(2), 214-230. [18] Lu, X., Dang, X., Qian, J., Zhou, Y., & Jiang, H. (2016). Experimental study of self-centering shear walls with horizontal bottom slits. Journal of Structural Engineering, 143(3), 04016183.  [19] Marreiros, R., Lúcio, V., & Pampanin, S. (2018). Development of steel angles as energy dissipation devices for rocking connections. Structural Concrete, 19(6), 1657-1671.  [20] Hashemi, A., Zarnani, P., Masoudnia, R., & Quenneville, P. (2017). Seismic resistant rocking coupled walls with innovative Resilient Slip Friction (RSF) joints. Journal of Constructional Steel Research, 129, 215-226.  [21] Cui, H., Wu, G., Zhang, J., & Xu, J. (2019). Experimental study on damage-controllable rocking walls with resilient corners. Magazine of Concrete Research, 71(21), 1113-1129.      [22] Xu, L. H., & Zhang, Y. (2021). Hysteresis behavior of bottom-story self-centering shear wall with steel brace-assembled bottom. Journal of Constructional Steel Research, 186, 106893. [23] ACI. 2009. “Requirements for Design of a Special Unbonded Post-Tensioned Precast Shear Wall.” Report No. ACI ITG-5.2-09, American Concrete Institute, Farmington Hills, MI. [24] Fahime Shahpouri, “Proposing a Steel Replaceable Device to Improve the behavior of self-centering RC shear walls”, (2023), PhD Thesis, Earthquake Engineering Group, Faculty of Civil and Environmental Engineering, Tarbiat Modares University. [25] Fahimeh Shahpouri; Abbas Ali Tasnimi and Joaquim A. O. de Barros, (2023). Experimental and Numerical Investigation on the Behavior of a New Replaceable Steel Device used in Self-centering Prefabricated Shear Wall. Journal of Structural Engineering, ASCE, ISSN 0733-9445. DOI: 10.1061/JSEDH/STENG11971. [26] ABAQUS. 2014. “Analysis user’s manual.” Version 6.14. Hibbitt, Karlsson, and Sorensen Inc Dassault Systems. [27] Fahime shahpouri and Abbas Ali Tasnimi, (2018), “Nonlinear Numerical Analysis of RC Precast Shear Walls with Self Centering System”, Journal of Civil Engineering Sharif, 2-34, No. 1.2, pp. 13-24. [28] ACI. 2007. “Acceptance criteria for special unbonded post-tensioned precast structural walls based on validation testing.” ACI ITG5.1-07, American Concrete Institute, Farmington Hills, MI