Volume 17, Issue 3 (2017)                   MCEJ 2017, 17(3): 213-226 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

moludi F, Kheyroddin A, Hemmati A. Investigation of the Seismic Behavior of Reinforced Concrete Beam-column Connections Made of High Performance Fiber Reinforced Cementitious Composites (HPFRCC). MCEJ 2017; 17 (3) :213-226
URL: http://mcej.modares.ac.ir/article-16-934-en.html
Abstract:   (28331 Views)
Investigation of the Seismic Behavior of Reinforced Concrete Beam-column Connections Made of High Performance Fiber Reinforced Cementitious Composites (HPFRCC)
In recent years, the use of the HPFRCC materials has been taken into consideration in order to construct safe structures against earthquake. High performance fiber reinforced cementitious composites (HPFRCC) refer to the materials, including cement mortar with fine aggregates and fibers. The distinctive feature of the materials is that they exhibit strain hardening behavior under tensile loading unlike normal concrete and fiber reinforced concrete. The HPFRCC materials can be used for seismic retrofitting of structural components, construction of structural fuses and in areas susceptible to degradation in structures, such as beam-column connections and shear wall interface beam. As the beam-column connections are considered as one of the points of damage in concrete flexural frames, the use of the HPFRCC materials in the beam-column connections, which have high strength and ductility, can lead to the formation of the structures with higher strength and ductility compared to the conventional concrete structures. This study first introduces the materials and then determines the effect of the use of the HPFRCC materials in the beam-column connection performance. Therefore, the results of laboratory studies conducted by Chao at University of Michigan were used to verify the finite element model. The effect of the different parameters of beam-column connection, including HPFRCC materials length area in the beam, HPFRCC materials length area in the column, compressive strength of concrete and HPFRCC materials, the distance between stirrups in the beam and the distance between stirrups in the column, individually or combined, and performance of connection were investigated in the base model. The results showed that maximum strength, yield strength and ductility ratio of beam-column connection, if the HPFRCC materials are used in some parts of the beam or column (with panel zone), are respectively 36.9%, 10.4% and 53.1% greater than the beam-column connection made of reinforced concrete. Furthermore, the concrete compressive strength parameter has a significant effect on the connection ductility ratio so that the ratio of ductility of the connection with 35 MPa concrete is 40.7% greater than the base connection (University of Michigan). It is notable that in the laboratory connection of the University of Michigan where the HPFRCC area length in the beam is twice the beam depth (711.2 mm), the reduction of the HPFRCC area length just in the beam led to the 40.7% increased ductility ratio of the connection from twice the beam depth (711.2 mm) to the length equal to the beam depth (355.6 mm) compared to the base connection (University of Michigan) while it had minimal effect on connection strength. Moreover, the use of the HPFRCC area just in the column led to the 50.1% increased ductility ratio of the connection compared to the base connection (University of Michigan). The results indicated that when HPFRCC materials were used in the beam, the use of the HPFRCC materials in the column did not have a significant effect on the strength and ductility ratio of the connection.
Keywords: HPFRCC, Reinforced Concrete, Beam-Column connection, Seismic Behavior, Ductility.
Full-Text [PDF 911 kb]   (8508 Downloads)    
Article Type: Technical Note | Subject: --------
Received: 2016/04/8 | Accepted: 2016/11/1 | Published: 2017/08/23

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.