Volume 16, Issue 2 (2016)                   MCEJ 2016, 16(2): 53-65 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bolouri Bazaz J, Jalilian Mashhoud H. Bearing Capacity of Foundations Reinforced with Micropiles. MCEJ 2016; 16 (2) :53-65
URL: http://mcej.modares.ac.ir/article-16-5741-en.html
Abstract:   (8795 Views)
Improvement of bearing capacity of existing foundations is of great significance. There exist many methods for practical purposes. Micropile is one of the most promising methods. Micropile is a replacement pile of small diameter (usually less than 300 millimeter) which is frequently reinforced using steel elements. To construct a micropile, steel reinforcement is placed in the borehole after drilling the borehole and subsequently the grout is injected into it. Micropiles transfer the structural loads to the deeper and stronger layers of the ground and confine settlement (similar to conventional pile foundations). They also improve the mechanical properties of soil layer such as density, bearing capacity, permeability and compressibility. Owing to their advantages, micropiles are widely used as foundations of new structures construction and also for reinforcing the foundation of existing structures. This research aims at experimental investigation of bearing capacity of foundations reinforced with micropiles under the condition of static loading. A small-scale physical model of a foundation reinforced with micropiles was developed and a series of static loading tests were carried out on. The model micropile-foundation was located on loose sand. Density of the underlying soil was kept almost uniform throughout the tests. The foundation model was circular and 100 mm and 5o mm in diameter and thickness, respectively. It was made from polyamide and considered to act as a rigid foundation during the loading owing to its material and thickness. This foundation was reinforced with a group of micropiles with 6 mm and 200 mm in diameter and length, respectively. These model micropiles were made from threaded steel bars. In order to mobilize friction, sand grains were glued to the surface of the micropiles. Various arrangements of micropiles including the number and inclination angle of micropiles were tested. From the comparative examination of the observed behavior of micropile foundations, the influence of micropiles’ arrangement on the mechanism and improvement of bearing capacity of foundation was investigated. Number of micropiles used in the group varied from 2 to 8. Micropiles were inclined at different angles (0°, 15°, 13°, 45° and 60°) to study its influence on the behavior of foundation reinforced with these elements. In order to quantitatively assess the degree of improvement in the bearing capacity of surface foundations reinforced with micropiles, an index R called “Network Index” was introduced in this study. The index R of unity means that the bearing capacity of foundations reinforced with micropiles is simply equal to the summation of the individual value of the surface foundation and that of the micropile group. There is an upward trend in the rate of index R when the number of micropiles is increased. On the other hand, in high numbers of micropiles used to reinforce the foundation, index R declines with increasing of inclination angle. In the case of micropiles with low-inclination-angle being implemented, bearing capacity is improved remarkably; an index R of 1.997 is achieved in this study where 8 micropiles inclined at an angle of 15° were used to reinforce the foundation.
Full-Text [PDF 1241 kb]   (3175 Downloads)    
Article Type: Original Manuscript | Subject: -------
Received: 2014/09/28 | Accepted: 2016/06/20 | Published: 2016/06/21

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.