Volume 15, Issue 5 (2015)                   MCEJ 2015, 15(5): 41-52 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khaji N. Devolopment of Decoupled Equations Methods for calculating hydrodynamic pressures on concrete gravity dams. MCEJ 2015; 15 (5) :41-52
URL: http://mcej.modares.ac.ir/article-16-5039-en.html
1- Tarbiat Modares University
Abstract:   (7350 Views)
Dams as one of the most important structures are always exposed to various hazards such as earthquake. As dam failure may lead to financial damages and fatalities, it should be designed with most economical and accurate methods. An earthquake causes hydrodynamic pressure waves exerting on the dam. This is one of the important factors in design of dams that are always considered by consulting engineers. Helmholtz equation is the governing relation on the propagation of hydrodynamic pressure waves in dam reservoirs during an earthquake. In order to solve the Helmholtz equation to calculate hydrodynamic pressures on dams, the reservoir’s boundary conditions (BCs) should be taken exactly into account. The BCs include (a) the interface boundary of dam and reservoir (as initial zone of reservoir excitation), (b) bottom boundary (with partial absorption of wave energy by accumulated sediments), (c) upstream boundary (with radiation of another part of the wave energy from the reservoir), and (d) formation of surface waves in the upper boundary of the reservoir. The purpose of present study is to model the mentioned physical phenomena in the frequency domain, using a new semi-analytical method, called Decoupled Equations Method (DEM). In the DEM, only the domain boundaries are discretized by specific high-order non-isoparametric elements. The main features used for modeling of geometry and physics of the problem consists of: (1) high-order Chebyshev polynomials as mapping functions, (2) special shape functions of 2n_η+1 degree polynomials for (n_η+1)-node elements , (3) Clenshaw-Curtis quadrature, and (4) integral forms produced by weighted residual method. By using these features and their properties, coefficient matrices of the system of governing equations become diagonal. This means that the governing partial differential equation for each degree of freedom (DOF) becomes independent from other DOFs of the domain to be analyzed. Therefore, this reduction in space dimensions of the main problem may significantly reduce computational costs in comparison with other available numerical methods. In this study, for the first time in order to provide a solution by low costs to calculate the hydrodynamic pressure distribution on the gravity dams, the relations of reservoir’s BCs are derived in local coordinates by using of the DEM and, the process of applying derived equations is then expressed into the solution of Helmholtz equation. To verify this method, an example of this field is solved by using the DEM, where dam and its rigid foundation are excited by horizontal harmonic vibration. The obtained responses from the solution of this example indicates that the present method for modeling of the potential problems with natural boundary conditions under earthquake excitations, by considering propagation of hydrodynamic waves in the reservoir, show acceptable accuracy and feasibility in comparison with the available analytical solution. The results of the DEM should be developed for more general condition of dam-reservoir interaction, which include flexible concrete gravity dams with inclined dam-reservoir interaction boundary conditions along with partial absorption of wave energy by accumulated sediments. These features are being followed by the authors, and will be disseminated in new papers soon.
Full-Text [PDF 1146 kb]   (4410 Downloads)    
Article Type: Original Manuscript | Subject: -------
Received: 2014/07/15 | Accepted: 2015/08/23 | Published: 2015/11/8

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.