Volume 15, Issue 5 (2015)                   MCEJ 2015, 15(5): 19-30 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

gordan M, Nia omran M. Numerical Evaluation of the Retrofit Effectiveness for Fiber Reinforced Polymers (FRPS) Retrofitted Concrete Slab Subjected to Blast Loading. MCEJ 2015; 15 (5) :19-30
URL: http://mcej.modares.ac.ir/article-16-12276-en.html
1- kordestan university
Abstract:   (7567 Views)
For retrofitting structures against blast loads, sufficient ductility and strength should be provided by Using high-performance materials such as fiber reinforced polymer (FRP) composites. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. The structural behavior of reinforced concrete (RC) slab retrofitted with fiber reinforced polymer (FRP) under blast pressure is simulated using nonlinear transient analysis of Ls-Dyna software. And the analysis results are verified with the previous experimental results. It was determined that overall the FRP retrofitted panels performed better than the companion control panels. Parametric studies are performed to examine the influence of FRP thickness, FRP strength, Compressive strength of concrete, ratio of steel bars on the response of retrofitted panel. Improvement on slab blast load resistance capacity is achieved by increasing all of parameters. But effect of increasing Compressive strength of concrete is more than another, In other words, increasing Compressive strength of concrete is economical. The relative effectiveness of CFRP and GFRP in strengthening deficient slabs can be evaluated by comparing the behavior of specimens. The two slabs in each set of specimens are similar in every aspect except that one slab was retrofitted by CFRP whereas the other one was confined by GFRP. The layers of the GFRP were as those of the CFRP. Comparisons of the ductility parameters show that both slabs in each set behaved in a similar manner and had comparable ductility parameters, the ultimate tensile strength of the CFRP fabric was higher than that of the GFRP fabric. The effectiveness of CFRP measured was larger than that of GFRP. From these test results, it appears that the effectiveness of FRP in enhancing slab ductility closely relates to its ultimate tensile strength..For retrofitting structures against blast loads, sufficient ductility and strength should be provided by Using high-performance materials such as fiber reinforced polymer (FRP) composites. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads.The structural behavior of reinforced concrete (RC) slab retrofitted with fiber reinforced polymer (FRP) under blast pressure is simulated using nonlinear transient analysis of Ls-Dyna software. And the analysis results are verified with the previous experimental results. It was determined that overall the FRP retrofitted panels performed better than the companion control panels. Parametric studies are performed to examine the influence of FRP thickness, FRP strength, Compressive strength of concrete, ratio of steel bars on the response of retrofitted panel. Improvement on slab blast load resistance capacity is achieved by increasing all of parameters. But effect of increasing Compressive strength of concrete is more than another, In other words, increasing Compressive strength of concrete is economical. The relative effectiveness of CFRP and GFRP in strengthening deficient slabs can be evaluated by comparing the behavior of specimens.
Full-Text [PDF 1152 kb]   (4560 Downloads)    
Article Type: Original Manuscript | Subject: --------|omran
Received: 2012/03/7 | Accepted: 2015/01/29 | Published: 2015/08/23

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.